

How Long Will It Take to Stop?

If you've ever been in a car when the driver slams on the brakes, you know that the car does not come to a stop immediately. Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop.

- 1. What factors do you think will affect a car's braking distance?
- 2. The graph shows the relationship between a car's speed and its braking distance. Some values are also given in the table below.

Speed	0	20	40	60	80
(mph)					
Braking	0	19	?	171	305
distance					
(feet)					

a. What is the braking distance of a car driving 60 miles per hour?

- b. What is the braking distance of a car driving 40 miles per hour? How do you know?
- 3. The ordered pair (73, 254) is on this graph. What does this point tell you?
- 4. A car took 200 feet to come to a full stop. Estimate the speed at which the car was traveling before the brakes were applied.

- 5. Find f(80) and interpret the meaning of this value in the context of this problem.
- 6. Use function notation to express that a car traveling 45 miles per hour will require a braking distance of 96 feet.

QuickNotes

Check Your Understanding

b. Find
$$f(1)$$
.

c. If
$$f(a) = 6$$
, find the value of a .

2. Let N(t) represent the number of people in line at a BBQ food truck, t hours after the food truck opens. Interpret each of the following statements in context.

a.
$$N(1) = 11$$

c.
$$N(4) > N(6)$$

b.
$$N(0) = N(3)$$

d.
$$N(R) = 34$$

- 3. Physicists have discovered that there is a pattern, or rule, that can determine the braking distance based on the car's speed: take the car's speed, square it, and then divide the result by 21.
 - a. Use this rule to predict the braking distance of a car traveling 90 mph.
 - b. Write an equation for f(s) that represents the car's braking distance when driving at a speed of s miles per hour.