| Name: | | | Date: | | | |----------------------|---|--|--|--------|--| | Topic: | | | Class: | | | | Main Ideas/Questions | Notes/Examples | | | | | | MONOMIALS | A monomial is a number, variable, or a product of numbers and variables. Examples: | | | | | | | Use the EXPONENT RULES to simplify monomial expressions: | | | | | | | | | EXAMPLE | | | | | Product Rule | | | | | | | Power Rule | | | | | | | Quotient Rule | | | | | | | Negative
Exponent Rule | | | | | | | Zero
Exponent Rule | | | | | | | When ADDING OR SUBTRACTING monomials, COMBINE LIKE TERMS! | | | | | | EXAMPLES | 1. $5x^2 \cdot -7x^6$ | | 2. $(-2a^3b)^2 \cdot 8a$ | ab^9 | | | | $3. \ \frac{54m^6n^4}{3m^2n} - 10m^4n^3$ | | 4. 2k ⁴ · 10k ⁻⁷ | | | | | $5. \left(\frac{2}{3} r^2 s^7\right)^2 \cdot \left(\frac{1}{6} r^3 s\right)$ | | 6. $\left(\frac{14w^{12}}{7w^3}\right)^{-1}$ | | | | | $7. \ \frac{15x^{10}y^4}{24x^{12}y^3}$ | | 8. $\left(\frac{c}{c^2}\right)^4 \cdot (-3c)^4$ |)4 | | | | 9. Give an example of two monomials with a quotient of $\frac{-3n^2}{m}$. | | | |--------------------------------------|---|--|--| | POLYNOMIALS | A polynomial is the sum or difference of many monomials. The highest exponent of a polynomial is called the Standard Form: | | | | | Write the polynomials below 10. $-k^5 - 1 + 8k - 3k^3 + \frac{1}{4}k^2$ | in standard form: | | | OL ACCITVINO | | degree (highest exponent) and number of | | | CLASSIFYING
POLYNOMIALS
Degree | terms. Use the charts to chart t | ne left to classify each polynomial below. | | | 0 | 14. $9x^5 - x^4 + 2x$ | | | | 3 4 | 15. 24 16. $\frac{1}{2}x^3 - 2x^2 + 4x + 15$ | | | | 5 Number of Terms | 17. $-x^2 - 18x + 31$ | | | | 1 2 3 | 18. $-\frac{3}{2}x^4$ 19. Give an example of a cubic binomial. | | | | 4+ | 20. Give an example of a linear monomial. | | |